The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  2  X X^2  X  X  0  X X^2+2  X  X  X  2  X  X  X  2  X X^2  0  X  X  X  X
 0  X  0 X^2+X+2  0 X^2+X  0 X+2 X^2 X^2+X X^2+2  X X^2 X^2+X+2 X^2+2 X+2  2 X^2+X  2  X  2 X^2+X+2  2 X+2 X^2+2 X^2+X+2 X^2 X+2 X^2+2 X^2+X X^2  X X^2+X  X X+2  X X^2+X+2  2  X  X  X  0 X^2 X^2+X  X X^2+X  X X^2+X+2  X X^2+X+2  0  X X^2 X^2  0  2
 0  0 X^2+2 X^2  2 X^2+2 X^2  2 X^2  0  0 X^2 X^2+2  2  2 X^2+2  2  2 X^2 X^2+2  0  0 X^2+2 X^2 X^2+2 X^2+2  2  0 X^2 X^2  0  2  0 X^2  2 X^2+2 X^2 X^2  2 X^2  0 X^2 X^2 X^2  2  2  0  0  0 X^2+2 X^2+2 X^2+2  2 X^2+2  0  2

generates a code of length 56 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 54.

Homogenous weight enumerator: w(x)=1x^0+128x^54+112x^55+98x^56+64x^57+44x^58+16x^59+40x^60+4x^62+5x^64

The gray image is a code over GF(2) with n=448, k=9 and d=216.
This code was found by Heurico 1.16 in 0.172 seconds.